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The study of unsteady boundary layer flows with self-induced pressure is of great theoretical and prac- 
tical interest in modern aerodynamics. The use of matched asymptotic expansions for the analysis of such 

flows [I-8] made it possible to establish the asymptotic nature of the flow as the characteristic Reynolds num- 

ber tends to infinity, similarity laws, and also the momentum laws which agree well with experimental data at 
large suberitical Reynolds numbers. As in the case of purely stationary flows [9, 10], the interaction of un- 

steady boundary layer with inviscid external flow has a significant effect on the nature of the flow mainly in 

certain localized regions of the flow with longitudinal dimensions of the order of/Re -3/8 [I-10]. For time in- 

tervals At ~ (I/u~)Re -I/4 the flow in the two regions of the flow with transverse scales of the order of/Re -3/8 

and l Re -~/2, respectively, are quasisteady [1-8 ]. At the same time the flow in the viscous wall region whose 

thickness is on the order of l Re -5/8 happens to be appreciably unsteady and is described by unsteady, incom- 

pressible boundary layer equations. The pressure gradient in these equations is not specified as in Prandtl's 

boundary layer theory but determined during the process of solution of the problem from the condition of vis- 

cous sublayer interaction with external supersonic flow. The body surface temperature was assumed constant 

in [I-10] along the entire interaction region. Thanks to this, the density and dynamic viscosity of the fluid in 

the entire viscous region with thickness of the order of l Re -5/~ are constant to the first approximation and 

their values coincided with respective values in undisturbed boundary layer on the body surface. In this case 

the solution of the equations of motion in the viscous region can be found independently of the energy equation 

whose solution is determined later from the computed velocity field [I-8]. The present work investigates the 

interaction of laminar boundary layer and supersonic flow arising from variation in temperature of the small 
surface region of the body by an amount equal to the order of the surface temperature itself over a character- 
istic time ~ t N (i/u~o)Re-I/4. 

Consider an unsteady flow caused by heating a segment of a flat plate in supersonic flow as the charac- 
teristic Reynolds number Re = p~u~ol/~ = e -2 approaches infinity. Here p~o, u~o, P~o are the density, 

velocity, and absolute viscosity of the free stream, I is the distance from the fiat plate leading edge to that 

segment of the surface which is subjected to rapid heating by any internal or external energy source. For con- 

venience all linear dimensions are referred to l, velocity components to U~o, density to poo, time to I/u~o, 
pressure to p u 2 enthalpy to u~,.and dynamic viscosity to p and in what follows only dimensionless quan- oo oO' ~O, 

titles will be used. Assume that the characteristic length of the heated segment is on the order e3/4 and the 

surface enthalpy (or temperature) varies by a value of the order of unity over a characteristic time A t ~ e I/2 . 

In this case it is possible to distinguish three different regions of the flow with equal length ~e 3/4 in the 

neighborhood of the heated segment: inviscid region of the supersonic flow (region I), whose streamwise and 

transverse dimensions are of the same order Ax ~ y ~ e3/4; the inviseid vortex flow whose transverse scale 

is of the order of the undisturbed boundary layer y ~ e (region 2); viscous wall layer (region 3) with a thick- 
ness of the order a 5/4 in which the velocity and enthalpy fluctuations are of the same order as the velocity and 

enthalpy at the surface of the body in the undisturbed boundary layer upstream of the interaction region. 

Asymptotic expansions for coordinates and flow parameters in the region ] can be represented in the 

form 

x - -  I ~ e3/4xi ,  y = 85/4yi ,  t = el/~ti,. (1 )  

u : l -~ e~/2ull~(tl, x~,  Yl) ~ . . . .  P = t / 7 M ~  ~ -  s l / 2 p l l  (tl, xt,  gl), 
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V=e~l/Ut;ll(tl, Xl, gt)-~ . . . .  h = i / [ ( ~ _ l ) M L ] + a ~ / ~ h ~ l ( t ~ , x ~ , y ~ ) ,  p = I + e U 2 p ~ ( t v x ~ , , y ~ )  + . . . ( 1 )  

Here  M~ is the f ree  s t r e a m  Mach number .  The subst i tu t ion of  a sympto t i c  expans ions  (1) in N a v i e r - S t o k e s  
equat ions  and the l imi t ing case  e -* 0 show that, as  in [1 -10 ] ,  the flow in the reg ion  1 is a weakly d i s tu rbed  
supe r son ic  flow and is d e s c r i b e d  by l i nea r  s u p e r s o n i c  flow theory .  The solut ion to the wave equat ion is de -  
t e rmined  f r o m  D ' A l e m b a r t ' s  equat ion which m a k e s  it poss ib le  to obtain a r e l a t ion  between p r e s s u r e  d i s tu rb -  
ance  Pit and ve r t i ca l  ve loc i ty  v~t at  yl = 0: 

p~ (G x~, O) ~ 0). (2) = . ~ v  n ( t ~ ,  x~, 
V M ~  - -  i 

Note that the flow p a r a m e t e r s  at Yl = 0 a r e  d e t e r m i n e d  by match ing  a s y m p t o t i c  expans ions  fo r  r eg ions  I and 
2. 

The flow in the reg ion  2 cons i s t ing  of  the buIk of  the flow in the und is tu rbed  boundary  layer ,  in the f i r s t  
approximat ion ,  as  shown in [1 -8 ] ,  is loca l ly  invisc id  and does  not af fec t  the p r e s s u r e  d i s t r ibu t ion  in the i n t e r -  
ac t ion region.  Asympto t i c  expans ions  and equat ions de sc r ib ing  the flow in this r eg ion  as  well as  the i r  so lu-  
tions a r e  obtained in the p r e s e n t  ca se  in a m a n n e r  s i m i l a r  to [8] .  Note, however ,  that  t ime de r iva t ives  of  flow 
p a r a m e t e r s  a r e  absen t  in equat ions  d e s c r i b i n g  the flow in reg ions  1, 2 and the solut ions  depend on the va r i ab le  
t as  a p a r a m e t e r  [6-8 ]. 

Asympto t i c  expans ions  fo r  flow p a r a m e t e r s  in the v i scous  wall l a y e r  c lose  to the su r f ace  ( reg ion  3) have 
the following f o r m :  

x - -  I = ~ / ~ % ,  y = e~/~g~, t = ~:/~t~, (3) 

u : :  e'/~z~,a~ (ta, xs, ga) + . . . .  p = t /?ML'+ s~/~pa ~ (t~, x3, Ua), 

v = e~/~v~(t~, X~, gi) + . . ", h = h~o(t's, xs,~ Y~) + �9 � 9  

p = p~o(ta, x~, g~) + . . . ,  ~ = IX~o(t~,.x~, y~) + . . . 

The subs t i tu t ion  of expans ion  (3) in N a v i e r - S t o k e s  equat ions  with the l imi t ing  case  e ~ 0 and a l so  
match ing  the a sympto t i c  expans ions  in reg ion  1-3 in o r d e r  to d e t e r m i n e  the r equ i r ed  boundary  condi t ions  [8] 
make it poss ib le  to obtain the fol lowing b o u n d a r y - v a l u e  p r o b l e m  fo r  the reg ion  3: 

aO~0 _~ OPec%, _~ ~P~0%~ _ 01 o p a l =  O, " ( 4 )  

t d 

01~31 
aya 

ual (0, x a, Ya) = aoY3, h3o (0, x3, y~) = h2o (0) 

_ _ - +  ao ' h~o--~ hoo as g3--~ + oo or x 3 - ~  - -  c~, u m(t~, x~, O) 

= hoo,,P3, (0, %) = 0,, 

= v~,(ts,, %,, O) = O, h~o(ts,, x3, O) hw(t~, ,  x3)~ 

Here  and in what fol lows the index W indica tes  flow p a r a m e t e r s  at  the wall; w is the index in the r e l a t ion  fo r  
the var ia t ion  of v i s c o s i t y  with t e m p e r a t u r e ;  h00 is the s tagnat ion  enthalpy a t  the plate  su r f ace  in und is tu rbed  
boundary  l a y e r  with Y2 = 0 (h20(0) = h00). Enthalpy h30 is e l imina ted  f r o m  the s y s t e m  of equat ions  (4) us ing 
the equation of  s ta te  and the fol lowing new va r i ab le s  a r e  in t roduced:  

6)--2 
Oo'-~- ~ ~ (5) 

xa = ~ __, V3 ~+f Y, 

~l/4a~o/4poo4 ' 

o/2 
Poo 

t~ - i~ln,~/~ T, %1 = 

a3/4Fil  ] i , I . t t l]~ 
vsl ~"  ~ ~ V, P31-- '  -o p 

- -  131/~p; ,d2 '~" p# 

f~l/4Poo--~ 

-~M Pao = pooR., P~ao ~ Poo , 
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where P00 is the density in the undisturbed boundary layer for the surface temperature upstream of the inter- 
action region with Y2 = O; /3 = (M~ - I)I/2. In the new variables (5) equations and boundary conditions (4) for 
the viscous wall layer of the interaction region take the form 

OR ~ .  ORV 
0-Y + -- t -~- = 0, (6) 

0 / \ o u  ou " ou ou dP +_u~(M~.f_), 
R U f  + R U b ~  @ R V "uu d X 

on  R o { J ~ _ o n l  oR on  -t- V - 
o--g- § U s N  U~ - ~ ~ \ R2 "Ug ],'~ 

d M = R  -~ P - ~ - - [ l i m  (Y--U)] ,  
d X  [ y ~  

U ( O , X , Y ) = Y ,  R ( O , X , Y ) = t ,  P(0,  X ) = 0 ,  
oU ~y-+t ,  R--+I as Y--++oo  or X- -~- -~ , j  

U ( T , X ,  0 ) = V ( T , X ,  0 ) = 0 ,  R ( T , X ,  0) = Rw (T, X). 

A so lu t i on  has  been  ob t a ined  in the p r e s e n t  p a p e r  fo r  the boundary -va lu -e  p r o b l e m  (6) fo r  the c a s e  of a 
s m a l l  i n c r e a s e  in s u r f a c e  t e m p e r a t u r e ,  o r ,  in o t h e r  words ,  a s m a l l  v a r i a t i o n  in f lu id  d e n s i t y  a t  the s u r f a c e :  
R W -- 1 + 6R1w (0 < 5 << 1). The b o u n d a r y - v a l u e  p r o b l e m  (6) can  be  l i n e a r i z e d  in  th i s  e a s e  u s ing  the s m a l l  
p a r a m e t e r  6 and s e e k i n g  a so lu t ion  in the f o r m  R = 1 + 5R1, U = Y + 5 Uj, V = 6V1, P = 6P 1. 

The fo l lowing  s y s t e m  of  equa t ions  and b o u n d a r y  cond i t ions  a r e  ob ta ined  in th is  c a s e  fo r  the f luc tua t ing  
flow p a r a m e t e r s :  

O R  1 O R  1 OU 1 " O g  1 
or ~- Y - ~  + --s2- + --sp - = ~  (7) 

OU 1 . O U  1 dP 1 'OUU1 0t? 1 " 
or ~ - Y - ~ - + v ~ =  ~ , + ~ - ~ o - ~ - , ~  

dA1  = l i ra  (U1),: OR 1 OR l 1 02R~ ' Pa ~ ----gZ" A~ y--,~ 
or ~- Y ox  - - ?  Oy 2 

U 1 (0, X, Y) = 0, R1 (0, X, Y) = 0, P~ (0, .v) 0,  
ou~ 
OY - v ~ O ' R l - + O  as y-*--+-oo o r  X - + - - o o ,  

U~(T, X ,  O) = v I ( T ,  x ,  0 ) =  0," RI(T, X, 0) = R i w ( r  , X) .  

F i n i t e - d i f f e r e n c e  me thod  with i m p l i c i t  s c h e m e  with r e s p e c t  to t i m e  was  u sed  to so lve  s y s t e m  (7) .  T h e  
s y s t e m  of  d i f f e r e n t i a l  equa t ions  (7) was r e p l a c e d  by  the c o r r e s p o n d i n g  d i f f e r e n c e  equa t ions  of  f i r s t - o r d e r  a c -  
c u r a c y  with r e s p e c t  to the v a r i a b l e s  T and X, and s e c o n d - o r d e r  a c c u r a c y  with  r e s p e c t  to the  v a r i a b l e  Y. The 
so lu t i on  of  the  s y s t e m  of  d i f f e r e n c e  equa t ions  was found us ing  r e l a x a t i o n  m e t h o d  with i t e r a t i o n s  a t  e ach  t ime  
l a y e r .  

The d e n s i t y  f i e ld  R1 (Ti+ 1, X, Y) was found at  the t ime  l a y e r  Ti+ 1 and then the p r e s s u r e  d i s t r i b u t i o n  was 
s p e c i f i e d  h ' o m  which the v e l o c i t y  f ie ld ,  and,  in p a r t i c u l a r  A~ (Ti+l,  X) was  d e t e r m i n e d .  Then the v a r i a t i o n  in 
the d i s p l a c e m e n t  t h i c k n e s s  A s thus ob t a ined  was s u b j e c t e d  to r e l a x a t i o n  and a new p r e s s u r e  d i s t r i b u t i o n  was  
ob ta ined .  The  p r o c e d u r e  is  con t inued  tiI1 the  d i f f e r e n c e  in the f luc tua t ions  in v i s c o u s  s t r e s s  OU1/0Y and d i s -  
p l a c e m e n t  t h i c k n e s s  a t  two c o n s e c u t i v e  i t e r a t i o n s  b e c o m e  l e s s  than  a c e r t a i n  s m a l l  s p e c i f i e d  va lue .  In o r d e r  
to s t a r t  the i t e r a t i o n  p r o c e s s  a t  the Ti+1 l a y e r  the p r e s s u r e  d i s t r i b u t i o n  f r o m  the p r e s s u r e  l a y e r  a t  t i m e  Ti 
was u sed .  At  the i n i t i a l  t i m e  T = 0 the f luc tua t ion  in flow p a r a m e t e r s  was a s s u m e d  z e r o .  As  an e x a m p l e  the 
r e s u l t s  of  the  c o m p u t a t i o n  of u n s t e a d y  flow in v i s c o u s  s u b l a y e r  with P r a n d t l  n u m b e r  ~ = 1 a r e  g iven  w h e r e  the 
v a r i a t i o n  in d e n s i t y  at  the s u r f a c e  with t ime  T and s t r e a m w i s e  c o o r d i n a t e  X a r e  s p e c i f i e d  a s  fo l lows :  

--sin @ f  e x p ( - - B X ~ ) , 0 ~ T  
R~w (T, X) (s) 

--exp(--BX~), " T ~ I. 

A t  t i m e  T = 0 the d e n s i t y  f luc tua t ion  on the s u r f a c e  with Y = 0 equa l s  z e r o  and the flow in the i n t e r a c -  
t ion r e g i o n  r e m a i n s  u n d i s t u r b e d .  At  the fo l lowing i n s t a n t s  of  t i m e  a s  T > 0 the  f lu id  d e n s i t y  a t  the s u r f a c e  
Y = 0 beg ins  to d e c r e a s e  (0 < 6 << 1, RIW < 0) which c o r r e s p o n d s  to an i n c r e a s e  in s u r f a c e  t e m p e r a t u r e  in this  
r eg ion .  In th is  c a s e  the v i s c o u s  wal l  l a y e r  beg ins  to hea t  up, l e a d i n g  to a change  in s h e a r  s t r e s s  a t  the s u r f a c e  
0U~/0Y = ( e f -  ef0)/6cf0 + wR1w with ef0 be ing  the n o n d i m e n s i o n a l  s k i n - f r i c t i o n  c o e f f i c i e n t  in the u n d i s t u r b e d  
b o u n d a r y  l a y e r  u p s t r e a m  of the  i n t e r a c t i o n  r e g i o n  and the p a r a m e t e r s  B and w in the b o u n d a r y - v M u e  p r o b l e m  
(7) w e r e  a s s u m e d  equa l  to one (]3 = w = 1). Cu rves  1-3 r e p r e s e n t  the  d i s t r i b u t i o n  of  the  quan t i t y  0U1/0Y on 
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the f lat  p la te  su r f ace  in the i n t e r a c t i o n  r eg ion  at  m o m e n t s  T -- 0.25, 0.5, 1.0, r e s p e c t i v e l y .  The curve  4 r e p r e -  
sen t s  s t a t i o n a r y  d i s t r i b u t i o n  of the d i s t u rbed  s h e a r  s t r e s s  aU1/0Y obta ined  a f t e r  e s t a b l i s h i n g  the flow in the 
v i scous  s u b l a y e r  of the i n t e r a c t i o n  r eg ion  (T > 10). Shear  s t r e s s ,  as ind ica ted  by computa t ions ,  m o s t  a p p r e c i -  
ab ly  d e c r e a s e s  in  the r eg ion  of m a x i m u m  v a r i a t i o n  in dens i ty  R1w(T,  X) or  in  the r eg ion  of m a x i m u m  in -  
c r e a s e  in  su r f ace  t e m p e r a t u r e  (X = 0). At  t ime  T = 1.0 the dens i ty  a t  the s u r f a c e  a t  X = 0 r e a c h e s  a m i n i m u m  
value  at  the o r i g i n  (X = 0) ( su r face  t e m p e r a t u r e  in  this  case  has a m a x i m u m  at  X = 0). At  this  m o m e n t  T = ] 
s h e a r  s t r e s s  a t t a in s  i ts  m i n i m u m  value aU1/OY = - 0 . 5 6  a t  X = - 0 . 2 .  Then  while e s t a b l i s h i n g  the flow at  T > 
1.0 the a d v e r s e  p r e s s u r e  g r a d i e n t  in the i n t e r a c t i o n  r eg ion  beg ins  to d e c r e a s e ,  thanks  to which even  the m a x i -  
m u m  va lue  of the f luc tua t ion  in s h e a r  s t r e s s  a t  the su r f a c e  d e c r e a s e s .  The d i s t r i b u t i o n  of p r e s s u r e  f luc tua t ion  
P I ( T ,  X) in  the i n t e r a c t i o n  r eg ion  is  shown in Fig.  2, where  the c u r v e s  1-3 c o r r e s p o n d  to m o m e n t s  T = 0.5, 
1.0, 10.5. Curve  3 r e p r e s e n t s  the s t a t i o n a r y  d i s t r i b u t i o n s  of the p r e s s u r e  f luc tua t ion  obta ined  a f t e r  e s t a b l i s h -  
ing the flow in the v i scous  sub l aye r .  These  computa t iona l  r e s u l t s  show that  the loca l  su r f a c e  hea t ing  can  lead 
to a r educ t ion  in  s h e a r  s t r e s s  in a c e r t a i n  r eg ion  of the s u r f a c e  and even  to a local  flow s e p a r a t i o n  and a s i g -  
n i f i can t  r e d i s t r i b u t i o n  of p r e s s u r e  a long the su r f a c e  of the body, and, consequen t ly ,  to a change in  i ts  m o m e n -  
tum c h a r a c t e r i s t i c s .  N u m e r i c a l  r e s u l t s  showed that  for  low va lues  of w f luc tua t ions  in  s h e a r  s t r e s s  and p r e s -  
s u r e  b e c o m e  l e s s  than in the ca se  ~0 = 1 in  the i n t e r a c t i o n  r eg ion  n e a r  the hea ted  s e g m e n t  of the su r face .  The 
s t a t i o n a r y  d i s t r i b u t i o n s  of f luc tua t ing  s h e a r  s t r e s s  OU1/~Y along the su r f a c e  obta ined  by so lv ing  the b o u n d a r y -  

va lue  p r o b l e m  (7), (8) for  the ca se s  co = 1, B = ] (curve  ]) and w = 0.5, B = 1.0 (curve  2) a r e  shown in  Fig.  3. 
Curve  3 i s  for  the s t a t i o n a r y  d i s t r i b u t i o n  with r e s p e c t  to the s h e a r  s t r e s s  for  the case  r = 1.0, B = 2.0 c o r r e -  
sponding to the i n t e r a c t i o n  of n o n s t a t i o n a r y  b o u n d a r y  l a y e r  and s u p e r s o n i c  flow n e a r  the su r f a c e  region  where  
the heat ing i s  r e l a t i v e l y  l e s s .  The v a r i a t i o n  in  s u r f a c e  s h e a r  s t r e s s  a l so  d e c r e a s e s  in this  case  when c o m -  
pa r ed  to the ca se s  co = 1, B = 1. 

In conc lus ion ,  we note tha t  s i m i l a r i t y  p a r a m e t e r s  ob ta ined  by  the in t roduc t ion  of new v a r i a b l e s  (5) make 
i t  poss ib l e  to ana lyze  the effect  of va r i ous  flow p a r a m e t e r s  on the n o n s t a t i o n a r y  flow with i n t e r a c t i o n  n e a r  the 
heated s e g m e n t s  of the body su r face .  
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Instruments are being developed at present in which a spherical filling is enclosed between perforated 
walls and its thickness amounts to three-six particle diameters. The specific conditions for the entry of gas 
into the filling (through holes in the perforated wall) and its relatively small thickness should have an effect 
on the nature of the gas motion in the filling, and consequently on heat exchange with spheres placed in various 
arrays. The distribution of the local characteristics of heat or mass exchange through the surface of spheres 
in the packings has been investigated in a series of experimental researches. The results obtained are pre- 
sented in the form of a distribution of the local coefficients of heat exchange over the surface. However, a 
number of practical problems require knowledge of the local surface temperatures (for example, for the calcu- 
lation of the thermal stresses in the casings enveloping a heat-generating sphere), which it is impossible to 
determine from the existing local heat transfer coefficients determined by detectors of the local thernlal and 
mass fluxes, in connection with the interrelationship between the internal and external heat exchange problems 
[ I]. An approximate computational dependence has been proposed in [2] for the determination of the maximum 
temperature nonuniformity in the casing enveloping" a heat-generating core. This dependence has been derived 
for a single type of packing of the spheres. The absence in it of the heat-generation power remains incompre- 
hensible. An expression for the relative maximum increase of the temperature differential in the casing caused 
by the different intensity of heat exchange at various points of its surface has been obtained in [3] by an alter- 
nate numerical solution of the time-independent thermal conductivity equation for a spherical heat-generating 
element under boundary conditions of the third kind (determined experimentally) in the range of variation 0.4- 
2.85 of the ratios of the thermal conductivity of the shell material and the coolant. However, this dependence 
has been derived for a specific packing of the spheres with a ratio of the channel and sphere diameters of less 
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